Careers in Biology

An in-depth review of career opportunities available with a biology degree.

Opportunities in the Life Sciences

BA-Level Positions in Biomedical Research

The most abundant employment opportunities (both locally and nationally) for an individual with an A.B. degree in the life sciences are provided by university and industrial biomedical research laboratories.  Several hundred entry-level positions in such laboratories are open each year in the St. Louis area alone, and experience of Biology Department faculty members who have sought to fill such positions in recent years suggests that the demand for well-prepared research assistants frequently exceeds the supply.  In addition to the many Biology Department graduates who have established long-term, satisfying, and rewarding careers as research assistants in the St. Louis area or elsewhere, there are a number each year who use such positions as a way of 'taking a breather' for a few years after college, to reassess their career goals, and to decide whether to undertake more advanced studies in graduate or professional schools.

The level of responsibility, independence and salary that one enjoys as a research technician depend strongly on one's training and experience, but they also vary with the type of laboratory.  A position in a large medical research lab, or an industrial research lab, frequently will provide a significantly higher starting salary than one in a small basic research lab.  But the latter may provide more opportunity for rapid advancement in responsibility and independence--let us say, from starting technician, to senior technician, to 'lab manager.'  (One should not expect, however, that in any of these situations one will be free to work on projects of one's own choosing that are unrelated to the interests and goals of the director of the laboratory; but one can expect that with time and demonstrated ability there will come increasing opportunities to plan, to execute and to interpret experiments designed to achieve the director's research objectives, and perhaps to supervise the work of others within the research group.)

If you think that you might be interested in such a position in the future, probably the most important single thing that you can do now in preparation is to get some experience in a research lab - either through a part-time job during the academic year, a summer job or internship, or by enrolling in Biol 200 or 500.  The first reason that this experience is important is self-assessment: does a research lab really provide the kind of environment in which you think you could be happy spending a significant portion of your life?  The second reason for seeking such experience is to improve your competitiveness: few things would weigh more heavily in your favor as an applicant for an entry-level research position than a letter from a former supervisor stating that during your college years you have already demonstrated your ability to function effectively and responsibly in a research lab.

In addition, however, if you wish to keep this option a viable one, you should seriously consider selecting courses that help you to develop 'marketable' skills and knowledge.  As just one example among many, the Laboratory on DNA Manipulation (Biol 437) provides practical experience with recombinant DNA techniques that many potential employers would consider extremely valuable.  Among the many advanced courses that the Biology Department offers, ones that provide particularly good theoretical and/or practical background for various areas of biomedical research include (not in order of importance, but in the order listed in the catalog, and with those that provide relevant kinds of laboratory instruction underlined):  Vertebrate Structure Laboratory (3110), Endocrinology (3151), Cell Biology (334), Eukaryotic Genomes (3371), Principles of the Nervous System (3411), Microbiology (349), Microbiology Laboratory (3491), Laboratory Experiments with Eukaryotic Microbes (3492), Lab. of Neurophysiology (404), Developmental Biology (4071), Immunology (424), Immunology Laboratory (Biol 4241), Research Explorations in Genomics (4342/434W), Lab. on DNA Manipulation (437), Protein Function in Model Cellular Systems (4520), Laboratory in Protein Biochemistry (4522) and General Biochemistry (451, or 4810).  In addition, training in the use of computers and/or laboratory work in the Department of Chemistry beyond that required for the Biology degree would be highly regarded by many potential employers.

When ready to seek employment, you should visit Washington University’s Career Center (110 Danforth University Center) for help finding jobs in your area of interest. The Career Center’s Junior Jumpstart program is highly recommended for all students. 

BA-Level Positions in Ecology

There is no specific agency that serves as an outlet for positions in ecologically-related areas, so the job seeker must consider a wide variety of approaches. An A.B. in Biology strengthened with some ability in programming, chemistry, artistic capabilities, business background, etc., does have a relatively wide range of job opportunities, which will vary seasonally and geographically. On the local level, commercial enterprises such as specialized gardening outlets, pet shops and exterminators should be investigated for beginning-level management positions.  Environmental consulting firms can be a prime target for graduates with experience not only in biology but in geology and environmental studies. Other local institutions, such as zoos, botanical gardens, museums, parks and ecological preserves, can offer opportunities leading to advancement.  Research universities and industries producing products that have ecological consequences hire persons as research assistants or higher. Both federal and state agencies devoted to ecological issues (U.S. Fish & Wildlife, Environmental Protection Agency, Bureau of Land Management, Department of the Interior [National Parks], Department of Agriculture [Forestry Service], State Conservation Departments, etc.) hire trained personnel to fit their specific needs.  There are internships, particularly federal, which give the appointee an opportunity to become familiar with the interaction of government with environmental issues.  Many recent graduates in this area have entered the Peace Corps.

Applicants will have to use their ingenuity to locate the positions outlined above. The local telephone directory should be consulted to obtain phone numbers and addresses of federal and state agencies located in the applicant's community. Other potential employers probably will be more dispersed, so the applicant will need to canvass his/her local possibilities through telephone directories or intimate knowledge of local organizations.

Opportunities in Education

Teaching at the high-school level can be rewarding, both personally and financially. Washington University offers a graduate-level (MAT, Master of Arts in Teaching) teacher-certification program in biology. Certification essentially entails completing an undergraduate major in biology followed by 1 year of graduate study in biology and education.

Washington University's teacher preparation programs provide the professional education that qualifies a student for certification to teach in public schools. On the recommendation of the Department of Education, the Missouri State Department of Education will issue a teaching certificate to an individual who successfully completes a Washington University teaching preparation program.  For other states, additional study may be required to qualify for a certificate.

Creating a program of courses that satisfies the biology major, the distribution requirements of the College of Arts and Sciences, and the undergraduate education courses necessary for graduate study in education in the fifth year is not easy. Completing a five-year program and obtaining an MAT degree (Master of Arts in Teaching) at WU simplifies this dilemma somewhat.  Students interested in securing admission to the WU teacher education program should stop by McMillan Hall, Room 215, to obtain program literature, or contact Madonna Riesenmy (mriesenm@wustl.edu) in the Department of Education as early as possible. A sample program is as follows:

Freshman Year
Math 131 (3-4 u) Calculus Biol 2960 (4 u) Biology I
Chem 111 (3 u) General Chemistry I Math 132/132L (4 u) Calculus
Chem 151 (2u) General Chemistry Lab Chem 112 (3 u) General Chemistry II
Psych 100B (3 u) Intro. to Psychology Chem 152 (2 u) General Chemistry Lab
Biol 181 (1 u) Freshman Seminar  

 

Sophomore Year
Biol 2970 (4 u) Biology II Biol 3050 (4 u) Biology III or Biol 3058 (2 u)
Chem 251 (3 u) Organic Chemistry Chem 252/401(3 u) Org Chem II or Phys Chem I
Chem 257 (2 u) Organic Chem Lab Ed 301C (3 u) American School
May term:  Biol 437 (4 u) Laboratory on DNA Manipulation  

 

Junior Year
Phys 117 (4 u) General Physics I Phys 118 (4 u) General Physics II
Biol 3110 (3 u) Vertebrate Structure Lab Biol 334 (3 u) Cell Biology
Biol 3041 (3 u) Plant Biology Biol 349 (4 u) Microbiology
Biol 3501 (4 u) Evolution Ed 408 (3 u) Exceptional Children
  Phil 321G (3 u) Philosophy of Science

 

Senior Year
EPSC 201 (4 u) Earth and the Environment Ed 4052 (4 u) Educational Psychology
Phil 233G (3 u) Biomedical Ethics Biol 381 (3 u) Introduction to Ecology
  Biol 5011 (1 u) Ethics

Well-prepared science teachers are in demand. Teaching positions usually offer good benefits and job security, although working conditions are often far from ideal. The job usually allows one to develop an individual approach, exploring one’s own interests and initiative; many teachers derive considerable satisfaction from the success of their students.

Information about teaching science at all levels is available from the National Science Teachers Association.

Primary School Teaching

It is unusual to combine a major in the sciences with preparation to teach at the elementary level, but it can be done and would allow one to make a unique contribution. Again, early planning is essential; interested students should contact the Department of Education. Students wishing to test their interest level should take one of the Foundations of Education courses (Ed 301C, Am. School) or Ed 313B, Childhood and Society, during their sophomore year.

Opportunities in Health

Medicine

Many students enter WU with an interest in going to medical school after the BA degree. A biology major provides excellent preparation for medical school; a biology major that includes at least 2 semesters of independent research (Biology 500) provides outstanding preparation for biological and/or biomedical research in graduate and/or medical school.

A typical program would look like this:
Fall - Year One Spring - Year One Fall - Year Two Spring - Year Two
Chem 111A (3) Chem 112A (3) Checm 261 (3) Chem 262 (3)
Bio elective below* (optional) Bio 2960 (4) (Chem 112A co-req). Bio 2970 (4) (Bio 2960 and Chem 112A pre-reqs) Bio 3058 (2), Bio 334 (3)
Math 132 (3) Math 223 or 2200 (3)    
Chem (Lab) 151 (2) Chem (Lab) 152 (2)    
Distribution (3) or English Comp 100 (3) English Comp 100 (3), or Distribution (3) 2 Distribution (6) Distribution (6)
 Distribution (3)      

* Optional biology courses of interest to prospective majors are offered in fall of freshman year: Biol 112 (Introduction to Problem-Based Learning in Biology), Biol 171 (Neuroscience Futures 1), Biol 1770 (Genetics and Behavior of Dog Breeds), Biol 181 (Freshman Seminar in Biology), Biol 1810 (Freshman Seminar in Imaging Sciences), Biol 191 (Phage Hunters Laboratory), Biol 193 (Investigating Eukaryotic Genomes), Biol 2010 (The Science of Biotechnology), Biol 2431 (Missouri’s Natural Heritage), Biol 2950 (Introduction to Environmental Biology).

All students who plan to major in biology who have an interest in pre-medicine should enroll in Chemistry 111A in the fall of freshman year. In addition to providing relevant material, this course teaches helpful study skills for success in a science curriculum.

Biology 2960 and 2970 (Principles of Biology I and II) are the introductory courses required of both biology majors and premedical students. Biology 2960 is normally taken in the spring of freshman year. Chemistry 112A is a corequisite of Biol 2960.  Biology 2970 is normally taken in the fall of sophomore year. Both Biol 2960 and Chem 112A are prerequisites for Biol 2970. These courses in Principles of Biology are designed to be taken consecutively and together provide a strong foundation for further study in the life sciences. Biology 3058 Physiological Control Systems covers material critical for the MCAT exam. Many students find Biol 3058 and Biol 334 Cell Biology mutually relevant and take them concurrently.

Mathematics 131-132 is required for all biology majors and satisfies medical-school requirements for one year of college calculus. Mathematics 233 and 2200/3200 are useful for students with interests in basic research.  Physics 117A-118A (or 197-198) is generally taken in the junior year by biology majors or pre-med students majoring in an area outside the sciences.  Premedical students considering either a chemistry, a physics, and/or an engineering major should follow the recommendations of the appropriate department concerning the timing of Physics 117A-118A.

MCATs (Medical College Admission Tests) are usually taken in April of the junior year.  MCATs are also offered in August just prior to the senior year; scores from the August MCATs arrive at medical schools after some admissions decisions have been completed, however.  All of the above required courses: (1) should be completed for the MCATs; (2) are needed if the student will attend medical school; and (3) are needed by all biology majors.  Biology 181 (or Bio 1810), a

1-unit credit/no credit course is highly recommended (but not required) for students with interests in biological and/or biomedical research. The freshman seminar Bio 112 is a good choice for those with interests in biology and/or medicine who want an additional biology course in the fall of freshman year.

There are 9-11 distribution courses outside of the natural and physical sciences that are required for the BA in the College. It is useful for the student to take 4-5 of these courses by the end of the second year to allow flexibility in course planning and scheduling in the junior and senior years, especially if the student chooses to take Independent Research. A research experience can be critical if the student wishes to be competitive for admission to (1) PhD, (2) MD, or (3) joint MD/PhD programs at research-oriented schools. The joint MD/PhD program is quite attractive for students with an interest in academic medicine and basic research; some of these programs cover the costs of tuition and pay a yearly stipend for all years spent in medical and graduate training.

See this NIH resource for a list of medical schools with MD/PhD programs. An excellent time to take independent research (Biology 500) is in the junior and senior years. Large open blocks of time in those years are very important since much of the independent research requires long hours not interrupted by classes; in addition, many students conduct their research at our Medical School and transportation time between the Medical School and the Main Campus is a factor in schedule planning during these semesters. Completing half of the distribution requirements outside of the sciences by the end of the second year can be very helpful to students who enroll in independent research. 

Many medical schools require a course in English Composition such as EComp 100 as well as an additional course in English, English Literature, or English Composition; see the requirements of specific medical schools for details. Courses in social sciences are increasingly required by medical schools; Psychology 100B is a good choice in this area. Many medical schools expect students to have a course in biochemistry (Biol 451or Bio 4810-4820) and sometimes one in microbiology (Bio 349) prior to matriculation.

All students with interests in medicine should demonstrate their abilities to assist others by serving as a volunteer.  Important volunteer experiences can be obtained in a variety of ways, e.g., at a hospital, at a nursing home, in a camp or school for individuals in need of help, serving as a tutor, etc. The Campus Y is an excellent resource to assist students in placement for volunteer experiences. Vicki May, Outreach Coordinator, (x5-6846; may@biology.wustl.edu) is also an excellent person to contact about placement. Students who would like academic credit for a volunteer "Experience in the Life Sciences" should consider enrollment in Biology 265.

 For further information about medical schools and the medical school application process, contact Dean Carolyn Herman (x5-6897) in the College of Arts and Sciences Office.  For questions about these guidelines in medicine, contact Professor Paul Stein (x5-6824; stein@biology.wustl.edu) in the Biology Department.  For further information on medical schools see The American Medical College Application Service at and the Medical College Admission Test (MCAT).

Dentistry

The field of Dentistry covers a broad spectrum of opportunities. The General Dentist or Family Dentist is an individual involved in the routine maintenance and clinical diagnosis of the oral cavity. This individual is trained in minor surgical procedures, oral prosthetic work, and some cosmetic Dentistry. The General Dentist is usually associated with a number of specialists. Typically, an individual spends four years in Dental School (undergraduate dental degree) and one or two years in a family-practice residency program before joining a dental group or starting a practice. There are also opportunities in the military and in such cases the US government will subsidize the cost of dental education. 

Other areas of dentistry generally require advanced training in postgraduate Masters or specialty programs. Such areas include orthodontics, periodontics, prosthodontics, pediatric dentistry, oral maxillofacial surgery, oral pathology, and forensic dentistry. There is also opportunity for dental research careers with a combined DDS-Ph.D. training program. Typically, such individuals are employed as faculty of Dental Schools or by pharmaceutical companies.

For information on these advanced programs it is recommended that individuals contact the Greater St. Louis Dental Society (13667 Manchester Road, St. Louis, MO, PH: 965-5960) or the American Dental Association (ADA), (211 E. Chicago Avenue, Chicago, IL 60611-2678, PH: 1-800-621-8099).

Suggested courses for a student who is considering a career in dentistry would include Biology 3110, 3151, 334, 3411, 349 and 4580. Art 107-108 would be helpful since excellent eye-hand coordination is required for the profession.  Many dental schools request that students applying to dental school take the standardized dental aptitude test before consideration for admission. Finding summer work in a dental office is recommended to get firsthand experience of the profession.

The first year of Dental School is similar or identical to Medical School in the basic science courses required. These usually include:  Human Gross Anatomy, Physiology, Histology, Cell Biology, Biochemistry, and Immunology/Microbiology. There are also preclinical courses to prepare students to interact with patients and staff and, in general, learn the basic operation of the Dental Clinics. The sophomore year includes courses such as oral pathology, radiology, and other preclinical courses to understand the clinical problems confronting dental clinicians. Usually, it is not until the second semester of the sophomore year and that summer when students begin to experience interactions with patients.  This period can best be described as a team apprentice-approach at most US Dental Schools.  In the sophomore year, the student is required to take and pass Part I of a National Dental Board Exam.  In the junior and senior years the student continues to take a variety of courses to understand and to treat oral diseases. A majority of time is involved in fulfilling certain clinical objectives. If all requirements are fulfilled, the individual must take Part II of a Dental National Board exam in order to receive his or her dental degree. 

Genetic Counseling

A genetic counselor helps individuals or families afflicted with genetic disease.  As genetic knowledge has increased, the definition of genetic disease has been broadened from the classic Mendelian diseases and chromosomal abnormalities to include common diseases (such as coronary artery disease, hypertension, Alzheimer’s disease, etc.) that have a strong genetic component.  The duties of a genetic counselor vary, but can include helping to diagnose the disease, counseling individuals about the nature of the disease and its genetic basis, informing individuals and their relatives about the risk of carrying the disease or being affected by it, requesting and/or performing genetic tests either to assess risk or to evaluate the genetic state of the individual, and working with patients and physicians in choosing treatment options.

There are two principal career paths for entering the field of genetic counseling.  The first is to obtain an M.D.  Medical doctors with an interest in genetic counseling have traditionally specialized in pediatrics because the bulk of classic Mendelian diseases and chromosomal abnormalities first become apparent in infants (about a third of all pediatric inpatients in U.S. hospitals are afflicted with a genetic or chromosomal disease).  However, this situation is beginning to change as genetics is increasingly being used to assess risk and effective treatment of diseases affecting older individuals.  Those individuals choosing the medical path to genetic counseling are usually involved primarily in diagnosis and treatment of the diseases.  The other path to genetic counseling is to pursue graduate work in human genetics, either at the Master’s or doctoral levels.  There are now several Master’s degree programs in genetic counseling that lead to accreditation as a genetic counselor by the American Board of Medical Genetics.  Individuals pursuing this path often emphasize risk assessment and prediction, family counseling, and the performance of genetic testing.

For either career path, biology majors interested in genetic counseling should take additional courses in genetics, such as Biol 3371 (Eukaryotic Genomes), Biol 4181 (Population Genetics and Microevolution), Bio 4183 (Molecular Evolution), Biol 4342/434W (Research Explorations in Genomics) and Biol 437 (Laboratory on DNA Manipulation).  Because genetic counseling involves risk prediction and the manipulation of probabilities, students also should take Math 2200 or 3200 (Elementary Probability and Statistics).  For those students wishing to work with the common diseases that affect older individuals and have a strong genetic component, additional courses in mathematics and statistics are strongly recommended, such as Math 439 (Linear Statistical Models), Math 493 (Probability), and Math 494 (Mathematical Statistics).

Additional information can be obtained from the National Society of Genetic Counselors, Executive Office, 233 Canterbury Drive, Wallingford, PA 19086 (phone: 215/872-7608) or the American Board of Genetic Counseling.

Genetic Epidemiology

Genetic epidemiology is the scientific study of familial distributions of human traits to understand how genetic and environmental factors interact to produce various diseases. Genetic epidemiology utilizes data from the Human Genome Project and computational methodology to conduct statistical analyses on large samples of subjects from relevant populations.  Population dynamics affect the frequencies and distributions of both genetic and environmental factors, and thus, their net effect on the phenotype of interest. Knowledge of populational histories is exploited for use in gene discovery and mapping.

Genetic epidemiologic studies investigate complex disorders such as coronary heart disease, hypertension, diabetes, cancer, and allergies, and neurological disorders. An understanding of the genetic underpinnings of such diseases promises to revolutionize medicine in the 21st century, enabling better preventive measures, diagnosis, prognosis, and treatments. Courses of particular relevance to genetic epidemiology include Eukaryotic Genomes (Biol 3371), Population Genetics and Microevolution (Bio 4181), and Molecular Evolution (Bio 4183). Courses in computer science (CSE 131, CSE132, CSE241) and statistics (Math 2200 or 3200, Math 322) are particularly useful for students interested in genetic epidemiology. 

Health Administration

Students who are considering a career in health care, but who think that they might be more interested in management and administration rather than patient care, should consider a career in health administration. Because of changes in our health-care system, there are now many diverse career options for those trained in health administration.  For example, health-care executives typically have management positions in hospitals, clinics, nursing homes, ambulatory care facilities, health maintenance organizations (HMOs), health-related associations, consulting firms, public health organizations and other government agencies. By working in these positions, health-care administrators have the opportunity to make significant contributions to improving healthcare in the communities served by these institutions and organizations.

Qualifications for an entry-level position in health administration include a Master's degree, usually in health-care management from an accredited school, and an internship, fellowship or previous work experience in a health-care organization or other business setting. There are many accredited colleges and universities in the USA and Canada (including Washington University) that offer suitable graduate programs.  In general, earning a Master's degree from these graduate programs takes two years.  The programs include coursework in health-care policy and law, marketing, health-care financing, human resources and other topics relevant to health-care management.  Many programs include supervised internships, residencies or fellowships in a clinic, hospital or health-care agency.

Occupational Therapy

Occupational therapists are dedicated to helping people to develop skills and to adapt to disabilities so that their lives become more productive and meaningful. As an applied social and biological science, occupational therapy benefits persons of all ages whose ability to engage in life's tasks is impaired by physical or mental disease, injury, birth defect or aging. Occupational therapists help individuals develop, regain or retain the skills they need to learn, to play, to earn a living and to tend to their personal needs.

At the present time, this is a highly marketable career with salaries (for Master's degree) ranging from $32,000 (starting) to $80,000 per year. Students interested in a Master's degree program in occupational therapy need specific prerequisite courses; most of these courses are part of the Washington University B.A. in Biology (an upper-level course in biology such as Bio 3110; Chem 111A-112A and Chem 151-152, Physics 117A; and English Composition). However, several concern specific areas in biology, psychology, and sociology/anthropology. Courses most often required include a course in human physiology (such as Bio 328, Principles in Human Physiology); a course in abnormal psychology (such as Psych 354); a course in developmental psychology (such as Psych 321); a course in sociology/anthropology (such as Anth 301B, Individual, Family, and Community); a course in political science or economics (such as Econ 103B, Microeconomics or Econ 352, Health Economics); a course in statistics (such as Psych 300 or Math 1011 or 320); and a course in ethics or logic (such as Phil 100G, Introduction to Logic and Critical Analysis, or Phil 233F, Biomedical Ethics). Competence in medical terminology is often required and can be gained through Classics 325D or through guided study. However, entrance requirements vary among schools; one should consult the catalogs or application brochures for the schools of interest.

Typically, a professional Master's Degree in occupational therapy takes approximately 2.5 complete years. This time includes a 6-month internship (non-paid) which is arranged by the degree-awarding institution. A final certification exam is required.

A complete description of coursework and prerequisites for the Washington University Program in Occupational Therapy and a description of occupational therapy careers are present in the Natural Sciences Learning Center. Career advisors are willing to discuss occupational therapy as a career with anyone interested.

Further information is available from the American Occupational Therapy Association.

Pharmacy

Pharmacists distribute drugs prescribed by physicians and inform patients about medications and their use.  They advise health practitioners on the selection, dosages, interactions, and side effects of medications. Pharmacists also monitor the health of patients during drug therapy to ensure that treatments are safe and effective. Pharmacists must understand the uses, clinical effects, and chemical compositions of drugs and their chemical, biological, and physical properties.

Careers in pharmacy cover a wide range of occupations including academic pharmacy, public health, community pharmacy, consultant and long-term care pharmacy, hospital and institutional practice, managed-care pharmacy, and pharmaceutical industry. Colleges of Pharmacy include both undergraduate and graduate institutions. The American Association of Colleges of Pharmacy provides detailed information on these academic programs and admissions procedures. More information on diverse pharmaceutical careers is also available from the 

Physical Therapy

Physical Therapy is a health profession that applies scientific principles to prevent and to remedy problems in human movement. Physical therapists evaluate patients to diagnose problems with movement that impair normal function. Treatment for these conditions is directed to optimize a patient's ability to move and function in everyday life. Treatment is performed to improve strength, endurance, coordination, flexibility, and range of joint motion, and to provide training for mobility at home and in the community.

Traditionally physical therapists have worked in many settings including hospitals, private offices, outpatient clinics, nursing homes, schools, home-care agencies, and rehabilitation centers. Physical therapists are trained to work with adult, pediatric and geriatric patients with musculoskeletal, neurological, cardiopulmonary or medical problems. Today's trends in health care are leading to increased demands for therapists to aid in preventing as well as treating musculoskeletal problems, work with patients with increasingly acute conditions, and focus on care needed by a population represented by a large, and growing, number of older individuals.

Physical therapy programs now offer baccalaureate, masters, or doctoral degrees at the professional entry-level. Programs are now offered in all of the United States (except Hawaii, Alaska, Nevada, and Wyoming), the District of Columbia, and the Commonwealth of Puerto Rico. The length of time for the prerequisite and professional components of education vary from program to program, and the total time required to prepare graduates ranges from four to seven years of college. Licensure is required after graduation before a physical therapist can practice.

Prerequisite Courses
Generally Required Courses Washington University Courses
1 year of Physics with labs Physics 117A, 118A
1 year of Chemistry with labs Chemistry 111A, 112A, 151-152
Introductory Biology Biology 2960, 2970, 3050
Anatomy Biology 3110
Physiology Biology 328
Trigonometry or Calculus Math 131
Statistics Psychology 300, Math 1011 or Math 320
1 year of English to include EComp EComp 100 and an English elective
1 year of Psychology to include Abnormal Psych Psychology 100B, 354
At least 1 other course in the Social Sciences Social Science elective
Medical Terminology competence Classics 225D *

*Classics 225D is optional. Students may contact the Physical Therapy program regarding a self-paced programmed text as an alternative to taking this course.

Additional courses recommended for students interested in entering the Master of Science Degree Program in Physical Therapy are 3411 (Principles of the Nervous System) and Biol 4501 or 451 (General Biochemistry).

For general information about programs in Physical Therapy students should write to the American Physical Therapy Association, 1111 North Fairfax Street, Alexandria, VA 22314 or call 703- 684-2782.  Additional information about the Washington University Program may be obtained by calling 314-286-1400.

Another helpful site is How To Become A Physical Therapist

Psychology

Psychology is the study of mind and behavior. Biology and psychology intersect mainly in studies of neuroscience and ethology. Neuroscience encompasses anatomical, biochemical and physiological studies of the nervous system, whereas ethology is the study of animal behavior, usually in an ecological or evolutionary context. Students interested in the interface of these disciplines may choose a double major in biology and psychology or may choose either single major and supplement it with courses from the other discipline.

There are several career paths for students of psychology. Psychiatry is a medical profession devoted to the diagnosis and treatment of emotional, mental and behavioral disorders of patients by psychoanalytical and pharmacological means. Standard medical training (MD degree) with a residency in psychiatry is required. Clinical psychology also involves the study and treatment of disturbed or maladaptive behaviors but substitutes completion of a PhD or equivalent degree in psychology for medical training. Both psychiatrists and clinical psychologists may operate private practices or may be employed by medical institutions, public school systems, juvenile correction centers, and rehabilitation centers. A third career path in psychology involves academic research and teaching. This path also requires a PhD in psychology, but the emphasis is on the experimental study of behavior and neurobiology rather than treatment of patients. These psychologists often are employed at universities as professors of psychology.

The study of psychology also can lead to careers that do not require doctoral-level training. Careers in social work and rehabilitation counseling usually require Master's degrees in these disciplines, but entry-level jobs are often available for people having only baccalaureate degrees with an emphasis on psychology. Study of psychology also provides a good background for careers in education, public relations, advertising, sales, personnel and many areas of business. Graduates with training in biology and psychology may find work as technicians in research laboratories in medical schools, universities and governmental institutions. Detailed information on career options in psychology is available through the Career Center.

Students interested in the interface between biology and psychology may choose the standard biology major and include advanced courses in the neurosciences (Biol 3411, Biol 404) among their electives. At least one course in statistics is recommended for students with interests in psychology (Math 320 and Psych 300 are appropriate introductory courses). Also recommended is a minor (minimum 15 units in psychology) or major (minimum 24 units in psychology) in the Department of Psychology.

Public Health

The mission of public health is to "fulfill society's interest in assuring conditions in which people can be healthy" (Institute of Medicine, Committee for the Study of the Future of Public Health, Division of Health Care Services. 1988. The Future of Public Health. National Academy Press, Washington, DC). Public health serves this mission through organized interdisciplinary efforts that address the physical, mental and environmental health concerns of communities and populations at risk for disease and injury. Health promotion and disease prevention technologies encompass a broad array of functions and expertise, including three core public health functions: (1) assessing and monitoring the health of communities and populations at risk to identify health problems and priorities; (2) formulating public policies, in collaboration with community and government leaders, designed to solve identified local and national health problems and priorities; (3) assuring that all populations have access to appropriate and cost-effective care, including health promotion and disease prevention services, and evaluation of the effectiveness of that care.

For detailed information on public-health professions and schools offering graduate degrees in public health, see the website of the Association of Schools of Public Health (ASPH).

Veterinary Medicine

Veterinarians treat and prevent animal disease.  Because of the great diversity of species treated, there is great variety in the work of veterinarians.  Most veterinarians work in private practice, either on their own or as partners in a group practice. Many private practices specialize in the treatment of small animals, primarily dogs and cats.  Increasingly such practices also treat birds and a variety of exotic animals. Mixed animal practices may also work with a variety of farm animals, as well as some nondomestic animals. A minority of veterinary practices specialize in large animals, usually with an emphasis on horses and cattle. There are many opportunities for veterinary work in areas other than private practice.  For example, in private industry veterinarians may conduct research on nutrition or drug effects for pharmaceutical companies or safeguard the health of laboratory animal colonies. Veterinarians also work for zoos and aquariums, and may act as consultants to wildlife preservation groups.  A variety of government agencies employ veterinarians in the areas of meat inspection, animal quarantine, and the care of wildlife in our parks. Academic institutions in the biomedical fields employ veterinarians as clinicians, researchers, and teachers.

Licensing to practice general veterinary medicine requires graduation with a Doctor of Veterinary Medicine (DVM) degree from an accredited college of veterinary medicine. Licensing requires satisfactory performance on the national board examination, as well as other requirements controlled by the states. After graduation, many veterinarians choose to specialize, either in a clinical specialty or in work with a particular species. Specialization involves a one-year internship followed by two or three years of residency training.

Students interested in a veterinary career should obtain experience working in a veterinary practice, as such experience is required for admission to most or all veterinary schools. Course requirements vary with the institution, but always include a solid basis of chemistry (both inorganic and organic), physics, and biology. Generally, courses in biochemistry, genetics, microbiology, and nutrition are also specified.  Biology majors interested in veterinary medicine should take our upper-level Vertebrate Structure Laboratory (Biol 3110) and Endocrinology (Biol 3151).

Additional information can be obtained from the Association of American Veterinary Medical Colleges, 1101 Vermont Avenue NW, Suite 710, Washington DC 20005-3521 (phone 202-371-9195), or the American Veterinary Medical Association, 1931 North Meacham Road, Suite 100, Schaumburg, IL 60173-4360 (phone: 1-800-248-AVMA).

Opportunities in Biotechnology & Business

Agriculture

According to a USDA National Report, the shrinking supply of graduates is the most critical force that will affect the agricultural human resource market. Current enrollment in higher education programs that produce graduates with expertise in food, agriculture, and natural-resource disciplines suggests further erosion of the number of graduates who will become available in the near future. Thus, a market demand for graduates specialized in agricultural sciences appears to be on the rise. Areas that will have a shortage in qualified graduates include forestry, horticulture/ornamental horticulture, agronomy/soils, animal sciences, and food science/food industry. A successful career in agriculture is dependent on a solid training in biology. In addition to the basic requirements in the Biology Major, courses in plant biology (for example, Biol 3041, 3262, 4023, 4028) should be taken. For students interested in animal science, additional courses in animal physiology and development are desirable (for example, Biol 3110, 328, 4580). See Peterson's Guide for graduate programs in agriculture. Information on employment opportunities in agriculture is available from the USDA.

Biotechnology

Students with B.S. (or A.B.) and M.S. degrees can find numerous positions in which they do hands-on work at the lab bench. Such work may involve research and development, production or quality-control testing. Students interested in helping to formulate company policy, helping to choose company research directions or running a research project involving multiple scientists are likely to need a Ph.D. Some companies will subsidize (or pay for entirely) additional education for employees with B.S. degrees who wish to obtain an M.S. (or M.A.) degree at a nearby university. Students interested in biotechnology should develop a strong background in areas including genetics, molecular genetics, cell biology, biochemistry, and microbiology. These fields are mostly represented within Area 1/A of the advanced courses for the Biology major.

Two other courses that are particularly relevant are the Laboratory of DNA Manipulation (Biol 437) and Plant Biology and Genetic Engineering (Biol 3041). In addition, interested students should gain as much real-life laboratory experience as possible, earning Biol 200 and Biol 500 credits while pursuing an independent research project in a lab that uses the techniques of molecular biology. There are approximately 300 laboratories on the Danforth and Medical School campuses that together form the Departments of the Division of Biology and Biomedical Sciences. The vast majority of these labs utilize the general tools of molecular biology while applying these tools to investigate a variety of biological processes and phenomena. It must be emphasized that with the tools of molecular biology (DNA, RNA and protein purification and analyses, DNA cloning, DNA sequencing, etc.) one can study a variety of problems in virtually any organism. Therefore, it is not as important to work on any single research problem as it is to gain basic training in the tools of the trade. Molecular Biology is both a science and a craft for which one must develop "good hands" at the research bench. As in any trade that requires skill and creativity, one develops "good hands" only through experience and practice. The biotechnology industry and graduate and medical schools preferentially accept students who develop these skills, can work independently with minimal supervision and can obtain strong letters of recommendation from their research mentors.

Additional resources:

Business-Finance and Marketing

Supporting the scientific research endeavor is another industry in which students with a good background in biology and business can excel. The biotechnology industry needs people who combine management skills with knowledge of the biological basis of their industry. This industry supplies equipment, supplies, and reagents to labs within the universities, hospitals, companies and government agencies in which scientific research is conducted. Many salespeople in this industry must meet one-on-one with laboratory managers to sell their products, and first-hand knowledge of the uses of, and scientific bases for, the products they sell is a strong advantage in this competitive area.

Computational Biology

With the sequencing of the human genome and development of high-throughput strategies to collect information on a genomic scale, we have a growing need to design new computational strategies for processing and analyzing biological data, particularly DNA and protein sequences. The application of information science to such problems is often called ‘bioinformatics.’ Other areas, such as biochemistry, cell physiology, evolutionary biology, and neurobiology, increasingly need to use mathematical approaches and computer modeling. Such an approach is often termed “computational biology.” Training in computational biology ideally should include a major in biology with course work selected from the appropriate areas of interest, and training in mathematics and computer science.

Recommended courses in computer science include CSE 131 (Computer Science I), CSE 201 (Formal Foundations of Computer Science), and CSE 241 (Algorithms and Data Structures). Recommended courses in mathematics include Math 2200 or 3200 (Elementary Probability and Statistics); Math 233 (Calculus III, required if you wish to take Physical Chemistry), Math 217 (Differential Equations), and Math 309 (Matrix Algebra). A student interested in bioinformatics would select biology courses from among biochemistry (Biol 451 or 4810), molecular biology (Biol 3371), molecular evolution (Biol 4183), and experimental methods (Biol 3491, Biol 3492, Biol 4342/434W, Biol 437, Biol 4520, Biol 4522). Computational biology is important also in the study of physiology of biological systems, including the nervous system, as covered in Biol 3151, Biol 328, Biol 3411, Biol 4030, and Biol 404. Because computational biology is a newly developing field, independent research (Biol 500) in bioinformatics is strongly recommended for anyone entering this specialty.

The following sample program provides a biology major with strong training in computational biology (Biology major, bioinformatics orientation):

Fall Semester Spring Semester
Freshman Year  
Math 132 Calculus (3) Math 233 Calculus (4)
Biology Seminar 118 (1) Biology 2960 Biology I (3)
Chem 111 General Chemistry (3) Chem 112 General Chemistry (3)
Chem 151 Gen Chem Lab (2) Chem 152 Gen Chem Lab (2)
E Comp 100 Expository Writing (3) Distribution requirement (3)
Distribution requirement (3)  
Sophomore Year  
Math 309 Matrix Algebra (3) Math 217 Differential Equations (4)
Biol 2970 Biology II (4) Biol 3XX Biology elective (3-4)
Chem 261 Organic Chem I (4) Chem 262 Organic Chem II (4)
CSE 131 Computer Science I (4) Distribution requirement (3)
Distribution requirement (3)  
Junior Year  
Biol 437 Lab on DNA Manipulation (4) Biol 500 Independent Study (3)
Biol 3371 Eukaryotic Genomes (4) Math 3200 Elem Prob & Statistics (3)
CSE 132 Computer Science II (3) CSE 241 Algorithms & Data Structures (3)
Phys 117 General Physics I (4) Phys 118 General Physics II (4)
Distribution requirement (3) Distribution requirement (3)
  Biol 500 Independent Study (3)
Senior Year  
Biol 5495 Computational Molec Bio (3) Biol 5496 Seminar in Computational Molecular Biology
Biol 4181 or 4183 Pop Gen or Mol Evol (3) Biol 328 Principles in Human Physiology (4)
Biol 500 Independent Study (3) Biol 500 Independent Study (3)
Distribution requirement (3) Open (3)
Distribution requirement (3) Distribution requirement (3)

 

Environmental Engineering

Environmental engineers take the skills and tools of engineers and apply them to environmental problem solving. Traditionally, environmental engineers have been involved in issues of water and air quality, although recent years have seen new areas emerge, such as bioremediation. Students at Washington University have a number of opportunities if they wish to become environmental engineers. One set of options, of course, is to pursue a background in engineering in the School of Engineering. There, a student can participate in an Environmental Resources program, the Environmental Engineering Science minor, or the Environmental Engineering Science option for a B.S. in Biological and Engineering Science. In addition, within the School of Arts & Sciences, the Environmental Studies major provides students with a good background. Students who major in biology can do quite well in environmental engineering; bioremediation requires extensive knowledge of biology as well as engineering.

The most important skill that a student majoring in biology can gain in preparation for a career in environmental engineering is a ready facility with mathematics. Students should consider taking Math 217 (Differential Equations) and perhaps also Math 233 (Calculus III) and/or Math 2200 or 3200 (Elementary Probability and Statistics). Other courses students might consider include Chem. Eng. 142 (Introduction to Chemical Engineering), where the important concepts of mass and energy balance are covered, Chem. Eng. 320 (Thermodynamics, also offered as Mech. Eng. 320), and Earth and Planetary Sciences 323 (Biogeochemistry). Within the biology major, students would want to be sure to take Microbiology (Biol 349) and Ecology (Biol 381, Biol 4170 or Biol 419).

For more details about careers, check out:

Pharmaceutical Industry

The pharmaceutical industry is diverse, with opportunities in small biotech start-up companies as well as in the large well-established multi-national firms. The industry is focused on the development of diagnostics for the rapid accurate identification of individuals with various disease states caused by infectious disease agents, hereditary diseases or acquired progressive disease states, with the development of therapeutic regimens to treat these diseases and with the development of means to prevent disease, often by immunization regimens. The pharmaceutical industry is also involved in the design, development, and evaluation of prosthetic devices.

In the area of development of diagnostic reagents and processes, the disciplines of microbiology, infectious disease research, immunology and molecular biology are particularly useful. In terms of drug discovery, a background in organic and physical chemistry and computer science, especially with regard to drug-receptor interaction modeling, is useful. Of course, if the drugs are biologics produced by microorganisms or plants, an expertise in microbiology and plant natural products becomes important. Much modern drug development requires gene cloning and expertise in molecular biology and genetics. Ultimately, because all drugs must be fully evaluated for teratologic and toxic activities in animals, animal-science training also becomes important.

In the development of vaccines and immunization protocols, individuals require expertise in microbiology and infectious disease research, as well as in immunology, molecular biology, and molecular genetics. In the manufacture of vaccines, one gets into chemical engineering, fermentation, and bioprocess technologies that rely heavily on engineering as well as industrial microbiology. The development of prosthetic devices relies heavily on knowledge of human anatomy and physiology and requires considerable engineering skills. In the evaluation of all products developed in the pharmaceutical industry, out of necessity, one must conduct clinical studies and these studies involve appropriate veterinary and/or medical training, as well as familiarity with experimental design, statistical analysis, toxicology, etc. Attending to regulatory issues with governmental regulatory agencies requires more of a business background as does marketing. These activities all require additional background and skills, but can be based on biology and biomedical science disciplines. Several schools offer Pharm.D. degrees, but be aware that some programs specifically require a B.S. in pharmacy for admission to the Pharm.D. program.

Information on schools of pharmacy can be obtained from the American Association of Colleges of Pharmacy.

more details

Check out more about outcomes and resources for our graduates.

Explore our careers and outcomes