Human Genetic Analysis


Basic Genetic concepts: meiosis, inheritance, Hardy-Weinberg Equilibrium, Linkage, segregation analysis; Linkage analysis: definition, crossing over, map functions, phase, LOD scores, penetrance, phenocopies, liability classes, multi-point analysis, non-parametric analysis (sibpairs and pedigrees), quantitative trait analysis, determination of power for mendelian and complex trait analysis; Linkage Disequilibrium analyses: allelic association (case control designs and family bases studies), QQ and Manhattan plots, whole genome association analysis; population stratification; Quantitative Trait Analysis: measured genotypes and variance components. Hands-on computer lab experience doing parametric linkage analysis with the program LINKAGE, model free linkage analyses with Genehunter and Merlin, power computations with SLINK, quantitative trait anaylses with SOLAR, LD computations with Haploview and WGAViewer, and family-based and case-control association anaylses with PLINK and SAS. The methods and exercises are coordinated with the lectures and students are expected to understand underlying assumptions and limitations and the basic calculations performed by these computer programs. Auditors will not have access to the computer lab sessions. Prerequisite: M21-515 Fundamentals of Genetic Epidemiology. For details, to register and to receive the required permission of the Coursemaster contact the MSIBS Program Manager ( or telephone 362-1384). Crosslisted with M21 MSB 5483
Course Attributes:

Section 01

Human Genetic Analysis - 01
INSTRUCTOR: Saccone, Rice, John, Agrawal, Cruchaga, Griffith, Roberson, Fernandez Hernandez, Johnson, Turner
View Course Listing - FL2022