Dmitri Nusinow

Honorary Adjunct Assistant Professor of Biology
Principal Investigator, Donald Danforth Plant Science Center
    View All People

    contact info:

      image of book cover

      Determining how plants know what time it is without a watch and which season they are in without a calendar.

      Deciphering the Circadian Interactome

      Plants use an endogenous time keeping mechanism known as the circadian clock to regulate the timing of metabolism, physiology and development. However, the basic composition of the circadian system is unknown and how the clock is connected to other pathways in unclear. We combine affinity purification, mass spectrometry, and genetics to identify, dissect, and define the protein complexes within the clock.

      Circadian Regulation of Growth

      The circadian clock regulates myriad processes in plants. We are particularly interested in how plants adapt their growth to seasonal variation in temperature and day length. We have identified new molecules that act as conduits between the circadian system and growth pathways. We are determining the function of these key proteins with the aim of improving crop production in response to a changing environment.

      Tool development for Plants

      In order to determine the molecular mechanisms that underlie key plant-specific processes, we are developing new tools and methods to explore protein function. This includes developing methods for rapid, facile purification of protein complexes and new methods for maintaining epitope-tagged proteins at endogenous levels and in their native context. We also develop inexpensive non-invasive imaging systems to monitor plant movement, bioluminescence and fluorescence during long-term time lapse experiments. We make the protocols, instructions, and scripts available and open-source so that we can leverage the community to improve and extend these when possible.