Xuehua Zhong

Professor of Biology
Dean’s Distinguished Professorial Scholar
    View All People

    contact info:

    mailing address:

    • Washington University
    • CB 1137
    • One Brookings Drive
    • St. Louis, MO 63130-4899
    image of book cover

    Professor Xuehua Zhong’s research focuses on epigenetic regulation of plant traits and environmental adaptation and how plants reprogram epigenetic landscapes in response to environmental changes to meet growth and survival needs.

    Zhong is interested in how cellular machines sense intrinsic and extrinsic cues and alter chromatin landscapes to generate adaptive responses. Her group focuses on epigenetic regulation by exploring how chromatin dynamics is established, maintained, erased, and inherited over time, and how altered chromatin modifications lead to improved plant traits and environmental adaptation. They combine functional genomics and high-throughput proteomics and genomics techniques together with traditional genetic and biochemical tools to understand the function and mechanism of epigenetic processes and develop novel chromatin-based technology for biomass production and agricultural improvement.

    In the news:

    Molecular Puzzles in 3D: Understanding a Mechanism for Methylation

    Professor Zhong awarded the H. I. Romnes Faculty Fellowship

    Deep in the Weeds

    Science Outreach: A Versatile Training Tool

    Combining on and off switches, one protein can control flowering in plants

    Multifunctional Plant Enzymes Promote Protein Production

    The “Icing” on the DNA

    Wisconsin Public Radio news on UW-Madison Researchers Study Plant Aging To Improve Yields

    Aging Leaves: How Epigenetic Regulation Gives Rise to the Signature Colors of Fall

    UW–Madison researchers study plant aging, gain insights into crop yields

    Beyond genetics: Ideas from a flowering plant

    Selected Publications:

    View the complete publication list

    Fang J*, Jiang J*, Leichter SM*, Liu J, Biswal M, Khudaverdyan N, Zhong X#, Song J#  (2022) Mechanistic basis for maintenance of CHG DNA methylation in plants. Nature Communications, https://doi.org/10.1038/s41467-022-31627-3

    (*Equal contribution,  #Corresponding authors)

    Liu Z, Simmons CH, Zhong X (2022) Linking transcriptional silencing with chromatin remodeling, folding, and positioning in the nucleus. Current Opinion in Plant Biology (In press).

    Nozawa K*, Chen J*, Jiang J*, Leichter SM, Yamada M, Suzuki T, Liu F, Ito H#, Zhong X# (2021) DNA methyltransferase CHROMOMETHYLASE3 is required for full ONSEN transposon activation in heat stress. PLOS Genetics 17(8): e1009710. https://doi.org/10.1371/journal.pgen.1009710 (*Equal contribution,  #Corresponding authors)

    Fang J*, Leichter SM*, Jiang J*, Biswal M, Lu J, Zhang ZM, Ren W, Zhai J, Cui Q, Zhong X#, Song J# (2021) Substrate deformation regulates DRM2-mediated DNA methylation in plants. Science Advances 2021 7(23):1-13 (*Equal contribution,  #Corresponding authors)

    Jiang J, Liu J, Sanders D, Qian S, Ren W, Song J, Liu F#, Zhong X# (2021) UVR8 interacts with de novo DNA methyltransferase and suppresses DNA methylation in Arabidopsis. Nature Plants 7(2):184-197. doi: 10.1038/s41477-020-00843-4 (#Corresponding authors).

    Scheid R, Chen J, Zhong X (2021) Biological role and mechanism of chromatin readers in plants. Current Opinion in Plant Biology 10;61:102008. doi: 10.1016/j.pbi.2021.102008

    Chen J, Liu J, Jiang J, Qian S, Song J, Kabara R, Delo I, Serino G, Liu F, Hua Z, Zhong X (2021) F-box protein CFK1 interacts with and degrades de novo DNA methyltransferase in Arabidopsis. New Phytologist 229(6):3303-3317. doi: 10.1111/nph.17103

    Jiang J, Ding A, Liu F#, Zhong X# (2020) Linking signaling pathways to chromatin dynamics. Journal of Experimental Botany 71(17):5179-5190. doi: 10.1093/jxb/eraa202 (#Corresponding authors)

    Mayer KS*, Chen X*, Sanders D, Chen J, Jiang J, Nguyen P, Scalf M, Smith LM, Zhong X (2019) HOS15 acts with the histone deacetylase to modulate transcription and development. Plant Physiology doi: 10.1104/pp.18.01156 (*Equal contribution).

    Yang Z*, Qian S*,  Scheid R, Lu L,  Chen X, Liu R, Du X,  Lv X, Boersma M, Scalf M,  Smith L, Denu J, Du J#, Zhong X# (2018) EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nature Genetics 50(9) 1247-1253 doi: 10.1038/s41588-018-0187-8 (*Equal contribution, #Corresponding authors)

    Qian S*, Lv X*, Scheid R*,  Lu L,  Yang Z, Chen W,Liu R, Boersma M, Denu J, Zhong X#,  Du J# (2018) Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL. Nature Communications 9(1):2425  DOI: 10.1038/s41467-018-04836-y (*Equal contribution, #Corresponding authors)

    Chen X, Lu L, Qian S, Scalf M, Smith L,  Zhong X (2018) Canonical and non-canonical actions of Arabidopsis histone deacetylases in ribosomal RNA processing. Plant Cell    30(1):134-152.

    Lu L*, Chen X*, Qian S, Zhong X (2018) The plant-specific histone residue Phe41 is important for genome-wide H3.1 distribution.  Nature Communications 9(1):630 doi:10.1038/s41467-018-02976-9. (*Equal contribution)

    Sanders D, Qian S, Fieweger R, Lu L, Dowell JA, Denu JM, Zhong X (2017) Histone lysine-to-methionine mutations reduce histone methylation and cause developmental pleiotropy. Plant Physiology 73(4):2243-2252.

    Chen X, Lu L, Meyer KS, Scalf M, Qian S, Lomax A, Smith LM, Zhong X (2016) POWERDRESS interacts with histone deacetylase 9 to promote aging in Arabidopsis. eLife DOI: http://dx.doi.org/10.7554/eLife.17214 

    Zhong X (2016) Comparative epigenomics: a powerful tool to understand the evolution of DNA methylation. New Phytologist 210: 76–80 

    Lu L, Chen X, Sanders D, Qian S, Zhong X (2015) High-resolution mapping of H4K16 and H3K23 acetylation reveals conserved and unique distribution patterns in Arabidopsis and rice. Epigenetics 10(11): 1044-1053

    Zhong X*#, Hale CJ*, Nguyen M, Ausin I, Groth M, Hetzel J, Vashisht AA, Henderson IR, Wohlschlegel JA, Jacobsen SE# (2015) DOMAINS REARRANGED METHYLTRANSFERASE3 controls DNA methylation and regulates RNA polymerase V transcript abundance in Arabidopsis. PNAS 112 (3): 911-916. (*Equal contribution, #Corresponding authors)